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The problem of the propagation of low-frequency harmonic waves in an elastic half-strip when they are excited from one end 
is considered. The conditions imposed on the external actions, satisfaction of which ensures that the principle part of the solution 
decays asymptotically, are formulated. The results obtained can be considered as an analogue of Saint-Venant's principle in the 
case of the low-frequency oscillations of a half-strip. © 2005 Elsevier Ltd. All rights reserved. 

Saint-Venant [1], on the basis of heuristic considerations, formulated the "principle of the elastic 
equivalence of statically equivalent forces" [2]. This principle provided the possibility of determining 
the position of the "Saint Venant solution" in the exact solution of the three-dimensional problem for 
a prismatic body with a stress-free side surface, and, in essence, justified the use of the semi-inverse 
method. Later, Boussinesq gave a more general formulation of this principle [2]. For massive bodies, 
loaded over small areas, according to Saint-Venant's principle the behaviour of the stress-strain state, 
at distances considerably exceeding the dimensions of an area, is determined by the principal vector 
and the principal moment, which, in particular, follows from an asymptotic analysis of the solution for 
a half-space, constructed for the first time by Boussinesq. In the 20th century a number of attempts 
were made to give a mathematically rigorous proof of this principle. A review of these investigations 
can be found in [3-6]. 

It has been shown strictly mathematically [7-10], that in the case of a static deformation of prismatic 
bodies (including a half-strip), Saint-Venant's solutions are identically equal to zero, if the principal 
vector and the principal moment of the stresses of the external forces applied to the ends are equal to 
zero. In this case the stress-strain state, generated by a self-balancing load, decreases exponentially with 
distance from the end. However, the exponent depends on the nature of the distribution of the self- 
balancing load over the end, the geometry of the cross section and the physical-mechanical properties 
(the non-uniformity and anisotropy) of the material. In certain cases a combination of these principles 
leads to the occurrence of weakly decaying solutions. In such cases Saint-Venant's principle in the classical 
formulation loses its meaning. The slowly decaying solutions were called "a weak boundary layer" in 
[11]; particular examples of problems whose solutions contain a weak boundary layer were given in [6, 
12]. Hence, for laminated or rod-type structural components, in which a weak boundary layer is possible, 
satisfaction of the conditions for the external load to be self-balancing turns out to be insufficient to 
localize the stress-strain state in the neighbourhood of the region where the load is applied. 

In the problem of the propagation of harmonic waves in a half-strip, homogeneous (non-decaying) 
modes, which are determined by the real roots of the well-known dispersion equations [13, 14], can 
serve as an analogue of the Saint-Venant solution. At any fixed frequency there is a finite number of 
such modes. The remaining modes are defined by complex roots and decay exponentially. Hence, the 
following question arises: what integral conditions must the amplitudes of the normal and shear stresses, 
specified at the end, satisfy so as to localize the oscillations at this end? 
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The problem of boundary resonance, excited by a wave travelling from infinity, investigated in detail 
in [14], is close in character to the problem of the stress-strain state; there is also a brief review there 
of publications devoted to an investigation of the propagation of waves in an elastic half-space, the 
majority of which are devoted to this problem. 

In this paper the problem of localizing the oscillations is investigated in the case when low-frequency 
oscillations are excited. Particular attention is given to investigating the asymptotic behaviour of the 
solution with respect to a dimensionless frequency parameter in the case when the amplitudes of the 
bending moment, and the longitudinal and shearing forces are equal to zero. The proposed consideration 
is based on the method of homogeneous solutions, asymptotic methods and the relations of generalized 
orthogonality. 

1. F O R M U L A T I O N  OF THE P R O B L E M .  
H O M O G E N E O U S  E L E M E N T A R Y  S O L U T I O N S .  

We will consider the problem of the propagation of harmonic waves in an elastic half-space. We will 
assume that any field characteristic (displacements, stresses, etc.) are proportional to e -~t, where m is 
the angular frequency. 

We connect the origin of a Cartesian system of coordinates OXlX 2 with the end of the half-strip so 
that 0 _< x~ < 0% -h < x2 -< h. We will assume that the following boundary conditions are specified at the 
end xl = 0 

0-11 = ~tPI(X2)'  O'12 = ~tP2(X2) (1.1) 

while the front surfaces are stress-flee 

X 2 = _h: O12 = 0, 022 = 0 (1.2) 

Here and below oij are the amplitudes of the stresses and uj are the amplitudes of the displacements. 
We will introduce dimensionless coordinates x = xl/h,y = xz/h and the displacement amplitude vector 

u = [Ul, u21 r. 
We will write the equations of the harmonic oscillations of an elastic isotropic medium in the 

form 

L(-iO x, )Qu - O~Cu + OxBU + Au + K2~,2U = 0 

C =  1 0 , B =  
0 2 

0 (1 --l(2)0y , 

(1 -- K~2)ay 0 
A = 

2 2 by 0 
2 

0 by 

2 
~, hm ~c2 _ c2 _ 1 - 2v 2 13" ~x ~ 

= 77' c~ 2 ( 1 - v ) '  C2 = p = ~X' Oy = ~yy 

(1.3) 

Here cl and ¢2 are the velocities of the longitudinal and transverse waves, respectively, v is Poisson's 
ratio, g is the shear modulus and P is the density of the material. 

Boundary conditions (1.2) take the form 

y = -+1: M(- iOx)U-  (O~BgU +AgU) = 0 

0 K z ] K2Oy 
Bg = , Ag = 

1 -~2 0 I 0 
0 

0y 

(1.4) 

We will seek the solution of problem (1.3), (1.4) in the form 

u = ha(y)e :/x (1.5) 
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We substitute (1.5) into (1.3), (1.4), and we obtain a two-parametric eigenvalue problem on the section 

L(y, )~)a = ( -  72C + iTB + a + KZ;%Z/)a = 0 (1.6) 

y = +1: M ( y ) a = ( i y B g + A g ) a  = 0 (1.7) 

Here  I is the 2 x 2 identity matrix. 
The conditions for a non-trivial solution of problem (1.6), (1.7) to exist reduce to finding the roots 

of the :following dispersion equations: 
in the case of the antisymmetric problem (Problem A) 

D~(y, )~) _- (~2 _ 272)2¢0s~1 sinz2 2 . + 47 Z1 slnzl c°sz2 
Z2 

(1.8) 

in the case of the symmetric problem (Problem B) 

DS(7, )~) = ( ~ 2  _ 2y2)2cosz2Sinx1 2 + 4y %2sinz2cosxl (1.9) 
Z1 

where Z~ = ~,2_ 72, Z~ = ) 2~:2_ 72. 
For any fixed )~, Eqs (1.8) and (1.9) have a denumerable set of roots {Tm = ym(L)}. A normal wave 

of the form 

U m = hum e-i°~t hame i(Y,.x-°~t) = , am = [aim, a2m] T (1.10) 

corresponds to each simple root. 
In the case of Problem A 

a~ m = AmiY[_  ( )2  _ 272)COSX1 s in (Zzy  ) + 2Z1ZzCOSZ2s in(z ly ) ]  

a 2 2 
a2m = -AmX2[()~ - 2 7  )cosz I cos(Zzy) + 272cos)~zCOS(ZlY)] 

(1.11) 

In the case of Problem B 

a~ m = BmiY[_ ( )2  _ 272) s inx  1 cos 0~2Y) + 2 Z l Z 2 s i n x 2 c ° s ( Z l Y ) ]  

a2m = BmZ2[(~, 2 - 272) sinz1 sin(z2y) + 2]( 2 sinz2 sin(xly)] 
(1.12) 

Here Am and B m are normalizing factors. 
We similarly have for the amplitude of the stress vector 

I~ m ----- bm eiYmx, bm = [blm, b2m] T 

In the case of Problem A 

a _ 2 • 2 • 
blm = Am[(~, 2 2] t2)()22-  2~2)cos~1  sln(~zY) - 47 ~l~2COS~2Sln(~lY)]  

a . 2 2 
b2m = 2Amt¥~2()~ - 2y )[COS~2COS(~ly ) - COS~ICOS(Z2y)] 

(1.13) 

In the case of Problem B 

S - -  2 • 

blm = Bm[()~ 2 -  272 ) (~  2 2 z Z 2 ) s i n z l c o s ( Z z y ) -  47 X l X 2 s l n ~ 2 c o s ( ~ l y ) ]  

s . 2 2 
bzm = -2Bml]f~2(~., - 2 y  ) [ s inz ls in(Zzy)-  sinZzsin(xly)] 

(1.14) 

We will call i1 m and o" m the elementary homogeneous solutions and a m and b m their Spurs. 
T Consider the augmented vector w = [u, er] and correspondingly the set of vectors Wm= Vme 'vmx, 

T T 
where Vm = [am, bm] -- [aim, a2m, blm, b2m] • 
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The vectors a m and b m are regarded as elements of a Hilbert space Hwi th  scalar product (everywhere 
henceforth integration is carried out over the section [-1, 1]) 

(a(1),  a(2))  = f ,  (~)_(2) (1)=(2)~.t. 
j ~ a  1 a 1 + a  2 u 2 )uy (1.15) 

where d~ j) are complex-conjugate scalar functions a(J) = [d (j) d (j)]T L 1 ~ 2 1 "  
The augmented vectors v = [a, b] r are regarded as elements of the Hilbert space H1 = H ® Hwi th  

scalar products 

(v (x), v(2))~ = (a (~), a (2)) + (b 0), b (2)) (1.16) 

The vectors u and w are regarded as the vector functions u(x) and w(x) with values in the Hilbert 
spaces H and H1 respectively. 

We also introduce over the vectors v and the vector functions w(x) the indefinite scalar product 

(V (1), V (2)) = (V (l), J v  (2)) = i[(a (1), b (2)) _ (b (1), a(2))] 

(W ( l ), w(2))  ( x )  = (W ( t ) , J w ( 2 ) ) ( x )  
(1.17) 

where 

J = i  0-Ii0 

For the vectors w(x) this indefinite scalar product has a clear physical meaning, namely, the energy 
flux through a cross section, averaged over a period, can be expressed as follows: 

P(w) = (oh~t(w, w)/4 = c0hg(v, v)/4 (1.18) 

2. R E L A T I O N S  OF G E N E R A L I Z E D  O R T H O G O N A L I T Y  AND 
T H E  P R O P E R T I E S  OF T H E  E L E M E N T A R Y  S O L U T I O N S  

We denote by A the set of eigenvalues {Ym}, by Ma the set of eigenvectors {am} and by My the set of 
vectors {Vm}. 

We will denote the real roots of Eqs (1.8) and (1.9) by f f  = -+Yr (r = 1, . . . ,  N, where N = N(L) is a 
natural number), and the eigenvectors and the Spurs of the elementary solutions corresponding to them 

+ + • + + + . . . . . .  
by ar, Vr If (Vr, Vr ) = dr > O, and by ar, v r if (Vr, Vr) = dr < O. + 

It follows from (1.18) that dr (dT) are proportional to the energy fluxes, while the group velocity is 
related to the energy flux as follows: 

2P(Wr) ilall 2 = hi(la~lZ + la2[2)dy 
Cg -- 2 2 2'  c2[farll 

Hence, we will give a superscript plus to those elementary solutions which transfer the energy in the 
positive direction of the Oxl axis, and a superscript minus to those elementary solutions which transfer 
the energy in the negative direction. 

We will denote the real part of the spectrum by AR. Apart from real roots, Eqs (1.8) and (1.9) have 
denumerable sets of complex roots, arranged symmetrically in the complex plane. We will denote roots 
by y~ if Imy{ > 0, and by y{ if Imy{ < 0. Taking into account the symmetry of their arrangement, we 
will also use the notation 

+ - = - 

Yk = Yk (Reyk >0,  Imyk>O), Yk = Yk, Y+k -Yk, Y--k -Yk 

We will denote the set {~/~} by A~. The corresponding elementary solutions u~(x), w~(x) decay 
exponentially as x ~ -+ o~. 
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Hence 

A = ARtOAct-) 

and, correspondingly 
+ + -- 

M a = M a R U M a c ~ M a c ,  M v = M v R • M v c U M v c  

We will present the relations of generalized orthogonality in the form of assertions, the proof of which 
can be found in [15-17]. 

Assertion 1. We have the following relations of generalized orthogonality for the Spurs of the elementary 
solutions 

+ + 7: + + 
(V +,V~) = dr~rq, (v r,Vq) = O, Vr, Vq E M R 

+ 

d 7 = - d  r = - d r ,  d r > 0 

± 7: + + + (v~,v~} = (v r,vk> = O, v r e  M R , v ; e  M -  c 
(2.1) 

< , , ;  ÷ + , + - +  
= = d k ,  d_k = - d k  v d~Skl, v~,v 7~ Mc; dk + + 

We will introduce the following two-component vectors and matrix 

f m =  [alm, b>~l r, g,, = [blm' a2m I t '  J0 = diag{1, -1} 

Assertion 2. The following relation of generalized orthogonality exists 

+ + i d +- + + + ~ i d ±- (Jo~, gq) = -~ rbrq (Joffr ' gk) = 0 (Jo~, gl ) : -~  k~)rq (2.2) 

Certain relations of orthogonality will be required below in the case when £ = 0 (the static problem). 
In this case the eigenvalues of the Rayleigh-Lamb equations (1.8) and (1.9) degenerate respectively 
to the following 

Do(Y) = y ( s h 2 7 - 2 7 )  = 0 (2.3) 

Do(Y) = g(sh2y + 27) = 0 (2.4) 

and the real part of the spectrum degenerates into a sextuple eigenvalue 70 = 0, to which two Jordan 
chains correspond. 

In the case of Problem A the Jordan chain consists of the eigenvector 

a 0 = [0, 1] r (2.5) 

and three associated vectors 

a a a 
a I = [ - i y ,  0] r, a 2 [0, ~ (y ) ] r ,  a3 [ - i0(y) ,  0] r (2.6) 

where 

2 F(2-V)y  2 - 3 9 + 4 3 V + V 2 1  
Vy 9 - 1 3 V - V 2 ,  0 = y ~ ~ +  3 0 T i - ~  J 

2( 1 - V) 30( 1 - V) 2 

In the case of Problem B the Jordan chain consists of one eigenvector and one associated vector 

s s = F o , - i v y ] r  
a° = [ l ' 0 ] r '  al L. l - v ]  (2.7) 
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In this case 

l I r a [ i(1 2 r s s = F  2/ 0 (2.8) a a a r 2y 0 b 3 = 0, 1 b 0 = b  1=0 ,  b 2 = [ _ l - v '  ' ; b° = 0 '  b 1 [_ l -v '  

Similar Jordan chains were obtained previously in [6, 10, 18] for a cylinder with an arbitrary cross- 
section, and a method of constructing them was given. 

Assertion 3. When )v = 0 for any eigenvalue 7~ e A~ we have the following relations 

(b~,a 0) = 0 (b~,al)  = 0 (b2, a0) = 0 (2.9) 

One more assertion follows from the theorems proved in [15, 18]. 

Assertion 4. When £ > 0, the systems of vectors M+,c, M~c are minimum and complete in the space H. 

Assertion 5. When )~ = 0 the systems of vectors M~- = a a ~ + - _  ~ a ~ - {a0, a l ,  a0, a0k}, M0 - {a0, al, a0, a0k} are 
minimum and complete in the space H. In the reduced sets a~k are the Spurs of the elementary solutions 
of the static problem, corresponding to the complex eigenvalues. 

From these assertions we obtain the following. 

Assertion 6. Any solution of Eq. (1.3), while satisfies boundary conditions (1.4) and the condition of 
energy radiation, can be represented in the form 

u = ZCrUr+(X) + ZCku2(x)  (2.10) 
r k 

where Cr and Ck are arbitrary constants. 
From relations (2.10) we obtain the following representations 

+ + = + ~[Ckw~(x) (2.11) I~ -~ Z C r { T r ( X ) ' k "  £ C k i ~ k ( X ) ,  W £ C r W r ( X ) ' t -  + 

r k r k 

In relations (2.10), (2.11) and everywhere henceforth the summation over r is carried out for 
all r corresponding to the roots 7 +, while summation over k is carried out for all k corresponding to the 
roots y~. 

3. D E T E R M I N A T I O N  OF T H E  E X P A N S I O N  C O E F F I C I E N T S  

We will introduce the following notation 

= 0 T 
u ( O )  = U 0 [ U ~ , U 2 ]  (3.1) 

a(O) = o ° = [Pl, P2] r (3.2) 

Our further discussion will be based on the solution of two simpler problems for a half-strip with 
mixed boundary conditions. 

The first problem. Suppose the following conditions are specified for x = 0 

ul(0) = u°l, cYl2(0) = P2 (3.3) 

We will represent the vector fix) = [uffx), •12(x)] r in the form of a series in elementary solutions. 
We have 

. + . + 
f(x) = x'-' ~+,.+ :'/~x x-",-.+,.+ ~'k x 

2 . a C r I r e  + 2 , ~ C k I k e  
r r 
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Assuming x = 0, we obtain the functional relation 

T 
+ + = [Ul, P2] Z Crfr "1" Z C ; f ;  = fo 0 

r r 

multiplying which in succession from the right by the vectors J0gq and J0gl, taking relations (2.2) into 
account, we obtain 

t . , + ~ +  o ~  ~-- 1 . . + _ +  r o - ~  ~- 
= a[(Ulblq- P2a2q)dy' q = 1 . . . . .  N(3.); - ~ , a  t c t = o|(ulb11- p2a2l)dY ~21aq ~q 

(3.4) 

Here  and below the subscript l takes all values corresponding to the complex roots from the set A~. 

The second problem. Suppose we are given the following conditions when x = 0 

U 2 ( 0 )  = U02, (Yll(0) = Pl (3.5) 

We introduce the vector g(x) = [(Yll (X) ,  u2(x)] T. As before, multiplying the corresponding relation in 
succession from the left by the set of vectors J0fq, J0fT, we obtain 

m 

1. ,+,.,+ ~ _ = _ u2b2t)dy u2b2q)dy ' ~idt Cl ~(Pla-lt o~- ~taqCq = I(plalq o~+- 1 + (3.6) 

Hence, for both types of boundary conditions we obtain exact integral representations for the 
expansion coefficients. 

Consider the problem with original boundary conditions (3.2). In this case the boundary-value problem 
can be reduced to an infinite algebraic system in the expansion coefficients. A universal method of 
constructing such systems was described in [14]. However, we will use another method here, as a result 
of which a system is obtained which is more convenient for further analysis in the case of small )~. 

We will transform the functional boundary condition 

ZCr+b~ + + Z C ; b ;  = a ° (3.7) 
r k 

into infinite algebraic systems for the antisymmetric and symmetric problems separately. 
We first note that in the case of Problem A, p l  = p~(y) is an odd function andp2 = p~(y) is an even 

function. In the case of Problem B, Pl  = P~(Y) is an even function and P2 = P~(Y) is an odd function. 
On the basis of Assertion 5, we introduce the following systems of vectors 

a a a Oa s r s Os~ 
M 0 = {a 0,al ,a l  }, M0 = l a  0,at ) 

which will be complete and minimum in the space H on the set of vectors whose components have 
corresponding symmetry with respect to the variable y. 

Multiplying Eq. (3.7) successively by the elements of the system M~, we obtain 

a a a a a a a a a 

Z d l r C r  + Z d l k C k  = ql' ~d2rCr + ~d2kC~k = q2 
r k r k 

a 

Zdl~rCar + Zdt~Cak = q, 
r k 

(3.8) 

Here  

a I o +  o o + a  I o +  
( b  r , a 0 )  -- dy = ( h  k , a 0 )  -- bzkdy dtr = bzr , dlk 

o o+ a I a+ o÷ o f o +  d2r = (b r , al)  = i blrYdY, k = (bk ,a~) = l blkydy 
(3.9) 
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a a +  Oa f . a +  Oa . a +  Oa 1 a a +  Oa i" l a +  Oa . a +  Oa . 
dr,. = ( b  r , a  l ) = j (o l~al l  +O2razl)aY, dlk = (b~ ,a  l ) = j (olkal t  +02~a2l)ay 

. . . . . .  ~ .  ~ - ~  a-~-~.. (3.10) 
q, = Ipzdy ,  q2 = t l p , ydy ,  qt = J(Pla , l  +pza2 , )ay  

Carrying out similar transformations using the system M~, we obtain 

S S S S S $ S $ S S 
£ d l r C ~  + £ d l k C k  = ql, 2 d l r C r  + 2dHcCk = q, (3.11) 

r k r k 

where 

S fbS+ S lbS+dy d l r  = I r d Y  , d l k  = l k  

s ~,.s+-g-s .s+--d-s, s r,.s+ O--s .s+ O--s,, 
dlr = J to lral l  + 02ra2l)ay, dlk = jtol~a~l + 02~a2l)ay 

s ¢ s s 1", s 0 s  s 0 s . .  

ql = Jp ldy ,  ql = J tp la l t  + P2a2oaY 

(3.12) 

4. ANALYSIS OF THE A N T I S Y M M E T R I C  P R O B L E M  AT 
LOW F R E Q U E N C I E S  

We will first investigate the roots of Eq. (1.8) for small values of the parameter )~. As mentioned above, 
when )~ = 0 the degenerate equation (2.3) has a quadruple root Y0 = 0 and a denumerable set of roots 
0% = limjm()~), which keep the same structure of the distribution in the complex plane as Ym. 

We will dwell initially on the investigation of the structure of the spectrum in the neighbourhood of 
Y0 for small )~. We expand the left-hand side of Eq. (1.8) in series in powers of 7 and )~, and we obtain 
an approximate dispersion equation 

15( 1 - v ) ~  2 - 1 0 0 ~  4 - 2 ~ 2 ( ~  4 - 5(2 - v))~ z) = 0 

Seeking its solution in the form 

1/4 . ~ 1 / 2  O~ = t o (/~ +tl)% 3/2+...) 

we find that, in the neighbourhood of £ = 0, there are four roots 

+ + 
Oq = i t ,  0~; = - i  t ,  ~2 = 11, 0~2 = -I1 

where 

- - 1 / 2  I / 4 .  4 1 / 2  1 / 4 . .  ~ _ 1 7 - 7 v  
t = ~ t o (1-)~tl)  , r I = ~ t o ( l+)~t l) ;  t o =  ( l - v ) ,  t 1 20.,/~-(1-v) 

Using perturbation theory to investigate the remaining roots of the equation, we obtain analytical 
expansions of the form 

~ m  = Y m  + O ( ) % 2 )  

where Ym are the roots of Eq. (2.3). 
Analysis of Eq. (1.8) enables us to assert that, for small )~, there are only two non-decaying elementary 

solutions (N(£) = 1) 

= ( 4 . 1 )  
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Among the decaying elementary solutions we distinguish two 

+ _+ +qx 
u 2 = a2e (4.2) 

which will be called a weak boundary layer, since for small £ the elementary solutions (4.2) decrease 
slightly as x --+ +- ~o. 

The set of remaining elementary solutions will be called a strong boundary layer. 
To set up the matrix of system (3.8) and then analyse it, we will present analytical expansions for the 

vectors a~, a~, b~, b~. 
With an appropriate choice of the normalizing factors A1 and A2, we obtain, by analytical expansions 

of the expressions (1.11) and (1.13), 

+ a ,~, a 9-2 a_t - .~.3 a 
a 7 = a 0 q: tt~a I - g a 2 _ tt~ a 3 + 0 ( £  2) 

+ a a 2 a 3 a 
a~ = a o :r q a  I + t] a 2 ~: rl a 3 + 0 ( £  2) ( 4 . 3 )  

b l  ~,2--a .~.3--a + 2--a 3--a = - - •  I )2 :~ I  ~ D 3 + O ( £ 2 ) ,  b 2 : 1] D2=[:1 ] D 3 + O ( £  2) 

The coefficients of expansions (4.3) are given by formulae (2.5)-(2.8). 
The analytical expansions of the remaining vectors have the form 

a~ = aok + 0(£2) ,  b k = bo~ + 0 ( £  2) ( 4 .4 )  

where a0k and bok are the Spurs of the elementary solutions of the static problem. 
Substituting expansions (4.3) and (4.4) into expression (3.9) and taking into account the relations 

(b~,  a o) = ( b ~ , a ~ )  = 0 

we can obtain the following analytical expansions for the coefficients of the system 

a . a i£312d0 a a d l l  = t d l 2  = (1 + O ( £ ) ) ,  d21 = - d 2 2  = £ d o ( 1  + O ( £ ) )  

a 

d~k = £2d~k(1 + 0 ( £ 2 ) ) ,  dln = £dt°l(1 + 0(£));  n = 1, 2 (4.5) 

a 0 dtk = dtk(l+O(£2)), d o = 4i / [3(1-v)]  

We substitute expressions (4.5) into system (3.8) and, using the small-parameter method, we determine 
the analytical relations between the coefficients C1, C2 and Ck and £. 

We first note that 

ql  = Q / ( h g ) ,  q2 = - i M / ( h 2 g )  

where Q is the amplitude of the shearing force and M is the amplitude of the bending moment. 
When ql = 0(1), q2 = O, ql = 0(1) we have, with an error 0(£  z) 

~2 2 

C1 = ql C 2 = 1] Cl (4.6) 
2d0(q5 + i~5)' ~-~ 

Hence, in the case considered the coefficients C1 and C2, which are the amplitudes of the propagating 
3/2 wave (the penetrating solution) and of the weak boundary layer, are respectively of the order of £- . 

The principal terms of the coefficients Ck are of the order of £-1/2 and are determined by the solution 
of the infinite system 

o o o 
= - d l l C 1  - d l 2 C  2 ~__d,kC k (4.7) 

k 
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When ql = O, q2 = 0(1), ql = 0(1) we have, with an e r r o r  0(~ 2) 

q2rl(T1 + i~) r3  
C1 = C2 = -i-~sC1 (4.8) 

C/o~2(n 2 + ~2), n 

The principal terms of the coefficients Ck are of the order of unity and are given by the solution of the 
infinite system 

0 0 0 
]F, dtkCk = ql -- dll C1 - d12C2 (4.9) 
k 

It follows from relations (4.8) and (4.9) that, in the case considered, the amplitudes of the inner solution 
and of the weak boundary layer are of the order of )C 1, while the amplitudes of the strong boundary 
layer are of the order of unity. 

When ql = 0, q2 = 0, ql = O(1), the coefficients C1 and C 2 a r e  of the order of )~, the coefficients Ck 
are of the order of unity, and the principal terms are found from the algebraic system 

0 
~.,d°kCk : ql, ~.,dlkCk = 0 (4.10) 
k k 

0 
doC l - doC 2 + Zd2kCk  = 0 (4.11) 

k 

In the case considered, the amplitudes of the displacements at the end are given by the expressions 

0 0 ~.Ckank + O().2), n 1,2 /An -~- 

k 

i.e. by a strong boundary layer, which, in turn, by Eqs (4.10), is determined by the self-balancing part 
of the load. 

Note that, unlike the static case, the amplitude of the stresses when ql = 0 and q2 = 0 do not decrease 
exponentially, but the ratio of the amplitudes of the penetrating solution and of the weak boundary 
layer to the amplitudes of the strong boundary layer will be of the order of )2. It is only possible to 
increase this order if additional requirements are imposed on the self-balancing load. It is not possible 
to formulate explicit conditions in terms of the specified end stresses, since the determination of Ck 
involves inverting infinite system (4.10). 

5. ANALYSIS OF THE SYMMETRIC P R O B L E M  IN 
THE L O W - F R E Q U E N C Y  RANGE 

Without going into detail, we will present the main results of the analysis. 
In the neighbourhood of 7 = 0 Eq. (1.9) has two real roots of the form 

7i = _+[3, ~ = )~ 14 12-0---v) 

For the remaining roots we have 

where 13n are the roots of Eq. (2.4). 
Two non-decaying elementary solutions 

5'~ = l~. + o(?~2) 

(5.1) 

s+- s+_ +i~x i~s+ is++. ++.i~x 
u 1 = a 1 e , = a I e ( 5 . 2 )  
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correspond to the roots Y1, where 

s+ s s a I = ao+[3a I + 0 ( 1 ~  2) = [1,+i~yv/(1  - v ) ] r + O ( [ ~  2) 

b{ -+ = ~b{ + O([~ 3) = +[~[2i/(1 - v), 01 r + O([~ 3) 

The remaining roots define a strong boundary layer. 
Analysis of system (3.11) leads to the following results. 
When q~ ~ 0, q~ = O(1), q~ = O(1) we have 

-1 (-1) A(I-1) . s C l = ~l a 1 +O([3), = - l q l ( 1 - v ) / 2  (5.3) 

The principal terms of the coefficients Ck are defined by the solution of the infinite system 

0 s . 0  _(-1)  0 0+ a~- )  
~ d t k C  k = (b k , = q l - a l l ? t l  , dtk 
k 

The components of the vectors b °+, a °- are obtained by taking the limit as 9~ ~ 0 in formulae (1.12) 
and (1.14). Hence, in the case considered the amplitude of the propagating wave is of the order of ~-i, 
while the amplitudes of the boundary layer elementary solutions are of the order of unity. 

When q[ = 0, q~ = O(1) we have 

61 = ~A( l l )+  0 ( 9  3 ) 

A~ 1) and Ck are given by the solution of the following system 

o , A(ll) i(1 V ) x - a o  r ~ 
~.dlkCk = ql, - ~ Z~"lk'-'k 
k k 

(5.4) 

The amplitudes of the components of the displacement vector whenx = 0 are of the order of unity and 
their principal terms are determined by the strong boundary layer (the self-balancing part of the load). 

The ratio of the amplitudes of the penetrating solution and the strong boundary layer when q~ = 0 
is of the order of 9~. However, unlike the antisymmetric case, it is possible here to formulate a fairly 
simple condition, the satisfaction of which leads to a ratio of the order of X3. We will derive this condition. 

Suppose the conditionsp~ # 0,p~ = 0 are satisfied. Then, as shown above, U°l, u ° = O(1). We return 
to the first formula of (3.6) (q = 1). Taking into account the fact that, in the case considered 

a l l  = 1 + ~,2hl(Y ), b2q = ~4h2(Y) 

h l (Y ) = _ 4 y 2  1 + 2 V 2 + V  3 y ( y 2 _  l ) v  2 
12(1 - v 2 )  ' h2(Y) - 12(1 - v) (5.5) 

d I -)viv (1 + O()v2)) 

we obtain, after substituting expressions (5.5) and (5.6) into the first formula of (3 .6)  

~V~22(@_v)(l+O(~,2))C1 = g/l+~2IPlhl(Y)dy+O(~'4) 

Hence, when the following condition holds 

f , ~2V e 2 , 
p l a y -  - -~-Jply  ay = 0 (5.6) 

the amplitudes of the penetrating solution will be of the order of )3. In particular, we can require that 
both integrals in condition (5.6) should be equal to zero. 
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6. C O N C L U S I O N S  

It follows from the above analysis that, in problems of the dynamics of a self-balancing low-frequency 
boundary load, small-amplitude propagating waves can be excited. Then, if we introduce the coefficient 
k = Po/P,  where P0 and P are the energy fluxes generated by the self-balancing and non-self-balancing 
loads respectively (they are proportional to the squares of the amplitudes of the propagating modes), 
characterizing the degree of localization of the oscillations at the end, then, in the case of the antisymmetric 
problem k a = 0 (£  5) if Q ;~ 0, and U = O(~, 4) if Q = 0, M ~ 0; in the case of the symmetric problem 
k s = 0(9~4), if the second integral in condition (5.6) is not equal to zero, and ks = O(~, 6) if condition 
(5.6) is satisfied or both integrals are equal to zero. 

The decay condition (5.6), obtained in explicit form, can be used directly when refining the boundary 
conditions in plate dynamics, including also the case when there are self-balancing loads (see, for example 
[191). 

This research was supported financially by the London Mathematical Society, the "State Support for 
the Leading Scientific Schools" programme (MSh-2113.2003.1) and the Russian Foundation for Basic 
Research (04-01-00069). 

R E F E R E N C E S  

1. SAINT-VENANT, B., Memoire sur la torsion des prismes, avec des concid6rations sur leur flexion, ainsi que sur l'6quilibre 
int6rieure des solides elastiques en general, et des formules pratiques pour le calcul de leur r6sistance ~ divers efforts s'exercant 
simultan6ment. Mere. Savants Acad. Sci. Inst. Imperial France, 1856, 14, 233-560. 

2. LUR'YE, A. I., Three-dimensional Problems of the Theory ofEIastieity. Gostekhizdat, Moscow, 1955. 
3. HORGAN, C, O. and KNOWELS, J. K., Recent developments concerning Saint-Venant's principle.Adv. Appl. Mech., 1983, 

23, 179-269. 
4. HORGAN, C. O., Recent developments concerning Saint-Venant's principle: an update. Appl. Mech. Rev., 1989, 42, 11, 

Pt 1, 295-304. 
5. HORGAN, C. O., Recent developments concerning Saint-Venant's principle: a second update. Appl. Mech. Rev., 1996, 49, 

10, 101-111. 
6. USTINOV, Yu. A., Saint-Venant'sProblemsforPseudocylinders. Fizmatlit, Moscow, 2003. 
7. GUSEIN-ZADE, M. I., The necessary and sufficient conditions for the existence of decaying solutions of the plane problem 

of the theory of elasticity for a half-strip. Prikl. Mat. Mekh., 1965, 29, 4, 752-760. 
8. GREGORU, R. D. and WAN, E Y. M., Decaying states of plane strain in a semi-infinite strip and boundary conditions for 

plate theory. Z Elast., 1984, 14, 1, 27-64. 
9. USTINOV, Yu. A., The basis of Saint-Venant's principle. Izv. SKNTs, Special Issue. 1994, 91-92. 

10. DRUZ', A. N. and USTINOV, Yu. A., Green's tensor for an elastic cylinder and its application to the development of Saint- 
Venant's theory. Prikl. Mat. Mekh., 1996, 60, 4, 660-668. 

11. USTINOV, Yu. A., The structure of the boundary layer in laminated plates. Dokl. Akad. Nauk SSSR, 1976, 229, 2, 325-328. 
12. GUSEIN-ZADE, M. I., The construction of a theory of the bending of laminated plates. Prikl. Mat. Mekh., 1968, 32, 2, 232-243. 
13. LAMB, H., On waves in elastic plates. Proc. Roy. Soc. London. Set. A., 1917, 93, 648, 114-128. 
14. GRINCHENKO, V. T. and MELESHKO, V. V., Harmonic Oscillations and Waves in Elastic Solids. Naukova Dumka, Kiev, 

1981. 
15. GETMAN, I. R and USTINOV, Yu. A., The Mathematical Theory of Irregular Solid Waveguides. Izd, Rost. Univ., Rostov- 

on-Don, 1993. 
16. FEDORYUK, M. V., Orthogonality-type relations in solidwaveguides.Akust. Zh., 1974, 20, 2, 310-314. 
17. ZIL'BERGLEIT, A. S. and NULLER, B. M., Generalized orthogonality of homogeneous solutions in dynamic problems 

of the theory of elasticity. Dokl. Akad. Nauk SSSR, 1977, 234, 2, 333-335. 
18. KOSTYUCHENKO, A. G. and ORAZOV, M. B., The problems of the oscillations of an elastic half-cylinder and coupled 

self-conjugate quadratic beams. Tmdy Seminara im. I. G. Petrovskogo, Izd. MGU, 1981, 6, 97-146. 
19. BABENKOVA, E. and KAPLUNOV, J., The two-term interior asymptotic expansion in the case of low-frequency longitudinal 

vibrations of an elongated elastic rectangle. Proc. IUTAM Syrup. Asymptotics, Singularities and Homogenisation in Problems 
of Mechanics. Kluwer, Dordrecht, 2003, 137-145. 

Translated by R.C.G. 


